Structure and Distribution of Centromeric Retrotransposons at Diploid and Allotetraploid Coffea Centromeric and Pericentromeric Regions
نویسندگان
چکیده
Centromeric regions of plants are generally composed of large array of satellites from a specific lineage of Gypsy LTR-retrotransposons, called Centromeric Retrotransposons. Repeated sequences interact with a specific H3 histone, playing a crucial function on kinetochore formation. To study the structure and composition of centromeric regions in the genus Coffea, we annotated and classified Centromeric Retrotransposons sequences from the allotetraploid C. arabica genome and its two diploid ancestors: Coffea canephora and C. eugenioides. Ten distinct CRC (Centromeric Retrotransposons in Coffea) families were found. The sequence mapping and FISH experiments of CRC Reverse Transcriptase domains in C. canephora, C. eugenioides, and C. arabica clearly indicate a strong and specific targeting mainly onto proximal chromosome regions, which can be associated also with heterochromatin. PacBio genome sequence analyses of putative centromeric regions on C. arabica and C. canephora chromosomes showed an exceptional density of one family of CRC elements, and the complete absence of satellite arrays, contrasting with usual structure of plant centromeres. Altogether, our data suggest a specific centromere organization in Coffea, contrasting with other plant genomes.
منابع مشابه
Comparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species
Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...
متن کاملThe secret message of heterochromatin: new insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription.
In the fission yeast, S. Pombe, small dsRNA generated by RNAi-dependent mechanisms are involved in the establishment and maintenance of heterochromatic regions. The existence of conserved features within the general organization of centromeric and pericentromeric repeats in yeast, mouse and human argues in favor of a conserved role for centromeric and pericentromeric-derived transcripts across ...
متن کاملKaryotypic Study and Chromosome Evolution in Some Iranian Local Onion Populations
Abstract A karyotypic study was performed on 12 Iranian local onion (Allium cepa L.) populations. A number of mitotic cells at metaphase stage for each population were prepared. Chromosomes of suitable mitotic cells were counted and various parameters, including long arm (L), short arm (S), total length of chromosome (TL), relative length of chromosome (RL), arm ratio (AR), r-value, total chro...
متن کاملA molecular-cytogenetic method for locating genes to pericentromeric regions facilitates a genomewide comparison of synteny between the centromeric regions of wheat and rice.
Centromeres, because of their repeat structure and lack of sequence conservation, are difficult to assemble and compare across organisms. It was recently discovered that rice centromeres often contain genes. This suggested a method for studying centromere homologies between wheat and rice chromosomes by mapping rice centromeric genes onto wheat aneuploid stocks. Three of the seven cDNA clones o...
متن کاملTransposable element evolution in the allotetraploid Capsella bursa-pastoris.
PREMISE OF THE STUDY Shifts in ploidy affect the evolutionary dynamics of genomes in a myriad of ways. Population genetic theory predicts that transposable element (TE) proliferation may follow because the genomewide efficacy of selection should be reduced and the increase in gene copies may mask the deleterious effects of TE insertions. Moreover, in allopolyploids, TEs may further accumulate b...
متن کامل